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Abstract. Fluctuations can break down mean-field critical behaviour. For the random-field
Ising model, fluctuations caused by the randomness are important. The Ginzburg criteria based
on two kinds of mean-field theory are discussed. One is the mean-field theory using the replica
method and the other is the site-dependent mean-field theory. An argument that justifies the use
of the site-dependent mean-field theory to obtain critical properties for the random-field Ising
model is given.

1. Introduction

Although the critical properties of the random-field Ising model (RFIM) have been
extensively studied for a long time [1], they are not fully understood. Fluctuations can
alter the mean-field critical behaviour. Both thermal and random fluctuations are present in
the RFIM.

The Ginzburg criterion [2] has been used to estimate the size of the critical regions.
For the RFIM, the criterion was discussed in [3]. Random-field fluctuations are shown to
be important below the upper critical dimensiondu = 6.

There has been an attempt to extract the critical behaviour from a mean-field theory
(MFT) [4]. The theory used is site dependent and fluctuations induced by the randomness
are included in the MFT. Critical exponents are obtained on the assumption that thermal
fluctuations are irrelevant.

In this article, we give an argument supporting the validity of using the site-dependent
MFT. It will be shown that the remaining fluctuations seem to be irrelevant to the critical
properties. To make a comparison, a MFT based on the replica method is also discussed.
The Ginzburg criterion in this approach is reconsidered and its relevance to the possible
replica symmetry breaking in the RFIM is discussed.

2. Fluctuations in the site-dependent MFT

The RFIM is represented by the following Hamiltonian:

H = −1

2

∑
r,r ′
J (r − r ′)S(r)S(r ′)−

∑
r

h(r)S(r) (1)

where J (r) is short-range ferromagnetic interaction and the Ising spinS(r) is located
at lattice sites. The independent random fieldsh(r) are assumed to obey the Gaussian
distribution

P(h(r)) = 1√
2πH 2

exp

(
−h(r)

2

2H 2

)
. (2)
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First we will derive the site-dependent MFT by the saddle point method. The partition
function is given by

Z = Tr e−βH

=
∫ ∏

r

dX(r)√
2π

exp

(
−1

2

∑
r,r ′
X(r)J̃−1(r − r ′)X(r ′)

)
×

∑
{S(r)}

exp

(∑
r

X(r)S(r)+
∑
r

h̃(r)S(r)

)
=
∫ ∏

r

dX(r)√
2π

exp

{
−1

2

∑
r,r ′
X(r)J̃−1(r − r ′)X(r ′)

+
∑
r

ln

[
2 cosh

(
X(r)+ h̃(r)

)]}
(3)

where we have used̃J ≡ βJ and h̃ ≡ βh. The magnetization is expressed as

M(r ′′) = 〈S(r ′′)〉
= 1

Z

∫ ∏
r

dX(r)√
2π

exp

(
−1

2

∑
r,r ′
X(r)J̃−1(r − r ′)X(r ′)

)
×

∑
{S(r)}

S(r ′′) exp

(∑
r

X(r)S(r)+
∑
r

h̃(r)S(r)

)
= 1

Z

∫ ∏
r

dX(r)√
2π

∑
r ′
J̃−1(r ′′ − r ′)X(r ′)

× exp

(
−1

2

∑
r,r ′
X(r)J̃−1(r − r ′)X(r ′)

)
×

∑
{S(r)}

exp

(∑
r

X(r)S(r)+
∑
r

h̃(r)S(r)

)
(4)

where〈· · ·〉 is the thermal average. It is natural to define a fieldϕ(r) as

ϕ(r) ≡
∑
r ′
J̃−1(r − r ′)X(r ′). (5)

Then the thermal average of the fieldϕ(r) is just the magnetizationM(r). Using the field
ϕ(r), the partition function is written as

Z =
∫
{dϕ(r)} exp

{
−1

2

∑
r,r ′
ϕ(r)J̃ (r − r ′)ϕ(r ′)

+
∑
r

ln

[
2 cosh

(∑
r ′
J̃ (r − r ′)ϕ(r ′)+ h̃(r)

)]}
. (6)

The mean-field equations are obtained from the saddle points of equation (6):

M0(r) = tanh

(∑
r ′
J̃ (r − r ′)M0(r ′)+ h̃(r)

)
. (7)

These equations have many solutions near the phase transition line. The solutions will be
labelled byα. The mean-field partition function may be written as
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ZMF =
∑
α

exp

{
−1

2

∑
r,r ′
M0,α(r)J̃ (r − r ′)M0,α(r ′)

+
∑
r

ln

[
2 cosh

(∑
r ′
J̃ (r − r ′)M0,α(r ′)+ h̃(r)

)]}
=
∑
α

exp(−βFα) (8)

where Fα is used as free energy for one particular solution. Within the MFT, the
magnetization may be given by

〈S(r)〉 = ∂ lnZMF
β ∂h(r)

=
∑
α

M0,α(r)wα (9)

where the weight of a solution is defined as

wα ≡ exp(−βFα)
ZMF

. (10)

Connected correlation functions may be given by

〈S(r)S(r ′)〉c = ∂2 lnZMF
β2 ∂h(r) ∂h(r ′)

= 1

β

∑
α

wαgαr,r ′ +
∑
α

M0,α(r)M0,α(r ′)wα −
∑
α

M0,α(r)wα
∑
γ

M0,γ (r ′)wγ

(11)

where

gαr,r ′ ≡
∂M0,α(r)

∂h(r ′)
. (12)

Equations (7) to (12) are the same as those used in reference [4].
To discuss the Ginzburg criterion for the RFIM, the following quantity will be

considered:

G ≡
(∫

V

dr
〈
(ϕ(r)− 〈ϕ(r)〉)(ϕ(0)− 〈ϕ(0)〉)〉)/∫

V

dr (〈ϕ(r)〉)2 (13)

whereV is the correlation volume. The numerator, which represents fluctuations, is est-
imated from ∫

V

dr
〈
(ϕ(r)− 〈ϕ(r)〉)(ϕ(0)− 〈ϕ(0)〉)〉 ≈ kT χT (14)

whereχT is the susceptibility. Its singularity near the critical point is given by

χT ∼ (T − Tc)−γ (15)

whereγ is the exponent obtained from the site-dependent MFT [4]. The site-dependent
magnetization near the critical point is

〈ϕ(r)〉 ∼ O(1) (16)

for a non-zero random field. Therefore the denominator of (13) is estimated as

ξd ∼ (T − Tc)−νd (17)

near the critical point andξ is the correlation length. Using (15) and (17),

G ∼ (T − Tc)ν(d−2+η) (18)
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where the scaling relationγ = ν(2− η) has been used. This implies that the fluctuations
do not seem to change the critical behaviour when

d > 2− η. (19)

In particular it is plausible that the site-dependent MFT gives correct critical properties for
d = 3.

3. Fluctuations in the replica MFT

In the replica MFT, the magnetization is usually assumed to be uniform. This can be
naturally derived from a saddle point in the replica formalism. In the following, the MFT
using a replica is reviewed first. Afterwards, fluctuations are discussed for this case.

The replicated partition function is

Zn =
∫ ∏

α

∏
r

dXα(r)√
2π

exp

(
−1

2

∑
α

∑
r,r ′
Xα(r)J̃−1(r − r ′)Xα(r ′)

)
×

∑
{Sα(r)}

exp

(∑
α

∑
r

Xα(r)Sα(r)+
∑
r

h̃(r)
∑
α

Sα(r)

)
(20)

whereα represents replicas in this section. Taking the Gaussian random average, we have

〈Zn〉h =
∫ ∏

r

dh(r)√
2π

∫
{dϕα(r)} exp

{
−1

2

∑
α

∑
r,r ′
ϕα(r)J̃ (r − r ′)ϕα(r ′)− 1

2

∑
r

h(r)2

+
∑
α

∑
r

ln

[
2 cosh

(∑
r ′
J̃ (r − r ′)ϕα(r ′)+ βHh(r)

)]}
(21)

where〈· · ·〉h represents the random average andϕα(r) is defined similarly to (5).
The mean-field equation is obtained from the saddle point:

−
∑
r

J̃ (r − r ′)M0+ ∂W0

∂ϕα(r ′)

∣∣∣∣
ϕα(r ′)=M0

= 0 (22)

whereW0(ϕ
α(r)) is defined by

eW0(ϕ
α(r)) ≡

∫ ∏
r

dh(r)√
2π

exp

{
−1

2

∑
r

h(r)2

+
∑
α

∑
r

ln

[
2 cosh

(∑
r ′
J̃ (r − r ′)ϕα(r ′)+ βHh(r)

)]}
. (23)

We have assumed replica-symmetric magnetizationM0. Taking then → 0 limit for the
replica, the mean-field equation becomes

M0(r) =
∫ ∏

r

dh(r)√
2π

e−(1/2)h(r)
2

tanh

(∑
r ′
J̃ (r − r ′)M0(r ′)+ βHh(r)

)
. (24)

The magnetic susceptibilityχ is easily calculated within the MFT. Near the critical
point it becomes

χ ∼ 1

T − Tc . (25)

This form shows the same singularity as the non-random ferromagnet. Taking into account
the relation

χ = β
∑
r ′

〈〈S(r)S(r ′)〉c〉h (26)
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the fluctuations are also of the same form as those for the homogeneous ferromagnet.
Therefore the Ginzburg criterion seems to be essentially unchanged in the presence of
the random fields, which contradicts the previous result [3]. What is wrong? To see the
origin of this contradiction, the fluctuations will be calculated directly within the Gaussian
approximation.

The connected correlation function is

〈〈S(r)S(r ′)〉c〉h
= lim

n→0

1

n

∫ ∏
α

∏
r ′′

dX′′α(r)√
2π

exp

(
−1

2

∑
α

∑
r ′′,r ′′′

Xα(r ′′)J̃−1(r ′′ − r ′′′)Xα(r ′′′)
)

×
∑
{Sα(r)}

(∑
α

Sα(r)

)(∑
β

Sβ(r ′)
)

× exp

(∑
α

∑
r ′′
Xα(r ′′)Sα(r ′′)+

∑
r ′′
h̃(r ′′)

∑
α

Sα(r ′′)
)

= lim
n→0

1

n

∑
r ′′

∑
r ′′′
J̃−1(r − r ′′)J̃−1(r ′ − r ′′′)

∑
α,β

〈Xα(r ′′)Xβ(r ′′′)〉n (27)

where〈· · ·〉n represents∫ ∏
α

∏
r

dXα(r)√
2π

e−Hn · · ·

and

Hn ≡ 1

2

∑
α

∑
r,r ′
Xα(r)J̃−1(r − r ′)Xα(r ′)+

∑
r

W0(X
α(r)). (28)

W0(X
α(r)) is defined by

e−W0(X
α(r)) ≡

∫
dh(r)√
2πH 2

e−(h(r)
2/(2H 2))

∑
{Sα(r)}

exp

(∑
α

Xα(r)Sα(r)+ h̃(r)
∑
α

Sα(r)

)
.

(29)

The fieldXα(r) is written as

Xα(r) = X∗ + xα(r) (30)

whereX∗ is the saddle point andxα(r) represents fluctuations. The Gaussian approximation
corresponds to a truncation up to the quadratic terms inxα(r). Equation (28) is approximated
as

Hn ' HMFn + 1

2

∑
α

∑
r,r ′
xα(r)J̃−1(r − r ′)xα(r ′)

+ 1

2

∑
α,β

∑
r

∂2W0(X
α(r))

∂Xα(r) ∂Xβ(r)

∣∣∣∣
Xα(r)=X∗

xα(r)xβ(r) (31)

where

HMFn = 1

2
nN

∑
r

J̃−1(r)(X∗)+NW0(X
∗). (32)

Here

W0(X
∗)

n→0−→ −n
∫

dh(r)√
2πH 2

e−(h(r)
2/(2H 2)) ln[2 cosh(X∗ + h̃(r))]. (33)
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The second derivative in equation (31) is calculated to be

∂2W0(X
α(r))

∂Xα(r) ∂Xβ(r)

∣∣∣∣
Xα(r)=X∗

= − δαβ − (1− δαβ)
×
(∫

dh(r)√
2πH 2

e−(h(r)
2/(2H 2))[2 cosh(X∗ + h̃(r))]n−2[2 sinh(X∗ + h̃(r))]2

)
×
(∫

dh(r)√
2πH 2

e−(h(r)
2/(2H 2))[2 cosh(X∗ + h̃(r))]n

)−1

+
{(∫

dh(r)√
2πH 2

e−(h(r)
2/(2H 2))[2 cosh(X∗ + h̃(r))]n−1[2 sinh(X∗ + h̃(r))]

)
×
(∫

dh(r)√
2πH 2

e−(h(r)
2/(2H 2))[2 cosh(X∗ + h̃(r))]n

)−1}2

≡ Aαβ. (34)

Next the following Gaussian integral will be calculated:∫ ∏
α

∏
r

dxα(r)√
2π

exp

(
−1

2

∑
α

∑
r,r ′
xα(r)J̃−1(r − r ′)xα(r ′)− 1

2

∑
α,β

Aαβ
∑
r

xα(r)xβ(r)

)
.

(35)

Using Fourier transformation, it becomes∫
{dxα(q)} exp

[
−1

2

∫ (
dq

2π

)d (
J̃−1(q)xT(−q) · x(q)+ xT(−q)Ax(q))]

= exp

{
−N

2

∫ (
dq

2π

)d
ln

[
det

([
1
/

2J̃
∑
µ

cos(qµ)

]
+ A

)]}
(36)

for the hypercubic lattice with nearest-neighbour interactions. The boldface notation has
been used for a vector and a matrix in the replica space. As is seen from (34), the diagonal
and off-diagonal elements ofA can be abbreviated asa andb respectively. Usinga andb,
equation (36) becomes

exp

{
−N

2

∫ (
dq

2π

)d
ln

[([
1

/
2J̃
∑
µ

cos(qµ)

]
+ a − b

)n−1

×
([

1

/
2J̃
∑
µ

cos(qµ)

]
+ a − (1− n)b

)]}
n→0−→ exp

{
−nN

2

∫ (
dq

2π

)d [
ln

([
1

/
2J̃
∑
µ

cos(qµ)

]
+ a0− b0

)
+ b0

/([
1

/
2J̃
∑
µ

cos(qµ)

]
+ a0− b0

)]}
(37)

wherea0 andb0 are obtained from the lowest-order terms ofa andb, expanding inn. Their
explicit forms are given by

a0 = −1+
[∫

dh(r)√
2πH 2

e−(h(r)
2/(2H 2)) tanh(X∗ + h̃(r))

]2

(38)
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and

b0 = −
∫

dh(r)√
2πH 2

e−(h(r)
2/(2H 2)) tanh2(X∗ + h̃(r))

+
[∫

dh(r)√
2πH 2

e−(h(r)
2/(2H 2)) tanh(X∗ + h̃(r))

]2

. (39)

The average with respect toHn is approximated as

〈· · ·〉n ' e−H
MF
n

∫
{dxα(q)} exp

[
−N

2

∑
α,β

∫ (
dq

2π

)d
xα(q)3αβ(q)xβ(−q)

]
· · · (40)

where the notation3αβ for the matrix is introduced. Using this expression, we have

1

N

∑
r,r ′
〈xα(r)xβ(r ′)〉n = 1

N
〈xα(q = 0)xβ(q = 0)〉n = − 2∂〈1〉n

N ∂3αβ(q = 0)
(41)

where

〈1〉n = e−H
MF
n exp

[
−N

2

∫ (
dq

2π

)d
ln(detΛ(q))

]
. (42)

The derivative becomes

∂〈1〉n
∂3αβ(q = 0)

= e−H
MF
n exp

[
−N

2

∫ (
dq

2π

)d
ln(detΛ(q))

](
−N

2

)
3̃αβ(q = 0)

detΛ(q = 0)
(43)

where3̃αβ is the cofactor of the matrixΛ. Using (43), equation (41) becomes

1

N

∑
r,r ′
〈xα(r)xβ(r ′)〉n = e−H

MF
n exp

[
−N

2

∫ (
dq

2π

)d
ln(detΛ(q))

]
(Λ−1(q = 0))βα. (44)

The diagonal and off-diagonal elements of the inverse matrixΛ−1(q) are given by

c = −[b(n− 2)+ a + J̃−1(q)]

[b(n− 1)+ a + J̃−1(q)][b − a − J̃−1(q)]
(45)

and

d = b

[b(n− 1)+ a + J̃−1(q)][b − a − J̃−1(q)]
(46)

respectively. Using these results, the fluctuations in the Gaussian approximation become

1

N

∑
r,r ′

〈〈S(r)S(r ′)〉c〉heiq·(r−r′)

= lim
n→0

1

nN
(J̃−1(q))2

∑
α,β

∑
r ′′,r ′′′
〈xα(r ′′)xβ(r ′′′)〉neiq·(r′′−r′′′)

= (J̃−1(q))2
[
a0+ J̃−1(q)− 2b0

(a0+ J̃−1(q)− b0)2
+ b0

(a0+ J̃−1(q)− b0)2

]
= (J̃−1(q))2

1

a0+ J̃−1(q)− b0

. (47)

We see that the stronger singularities in the diagonal and off-diagonal elements are cancelled
out and a weaker singularity survives. This singularity is of the same form as that of the
corresponding homogeneous system.
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The Ginzburg criterion is also obtained from the specific heat. The specific heat is easily
calculated by using (37) in the Gaussian approximation. It diverges ford 6 6. Therefore
the correct Ginzburg criterion [3] is obtained in this case. The critical exponentα for the
specific heat is given by

α = 3− d
2

(48)

in this approximation. This result satisfies the hyperscaling relation with the dimensional
reduction by 2:

α = 2− ν(d − 2) (49)

whereν = 1
2 in the Gaussian approximation. The dimensional reduction is a consequence

of the replica symmetry. The weaker singularity in (47) is also a consequence of the
replica-symmetric correlation function〈xα(r)xβ(r ′)〉n. This quantity has been shown to be
replica asymmetric in reference [5] at the ferromagnetic transition point within the self-
consistent screening approximation. The replica symmetry breaking is expected to resolve
the problem of the cancellation of the singularities in the fluctuations. In section 2, many
solutions are considered, which may be related to the replica symmetry breaking. This is
why the discussion in section 2 for the fluctuations derived from the susceptibility may be
justified.

4. Conclusion

The Ginzburg criterion for the RFIM is discussed by obtaining the fluctuations for two kinds
of MFT. The fluctuations have been obtained from the susceptibility at the mean-field level.
The mean-field susceptibility is essentially the same as the fluctuation that is constituted
from connected correlation functions in the Gaussian approximation.

In the replica MFT, the singularity of the susceptibility is weaker than that expected
from the specific heat. Closer inspection of the connected correlation functions reveals that
stronger singularities are cancelled out because of the replica-symmetric treatment.

On the other hand, many solutions are included in the site-dependent MFT, which seems
to correspond to the replica symmetry breaking. Therefore the mean-field susceptibility is
expected to include fluctuations that lead to the correct derivation of the Ginzburg criterion.
This is consistent with the fact that critical behaviour seems to be obtained correctly from
the site-dependent MFT.
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